GPU implementation of a road sign detector based on particle swarm optimization

نویسندگان

  • Luca Mussi
  • Stefano Cagnoni
  • Elena Cardarelli
  • Fabio Daolio
  • Paolo Medici
  • Pier Paolo Porta
چکیده

Road Sign Detection is a major goal of the Advanced Driving Assistance Systems. Most published work on this problem share the same approach by which signs are first detected and then classified in video sequences, even if different techniques are used. While detection is usually performed using classical computer vision techniques based on color and/or shape matching, most often classification is performed by neural networks. In this work we present a novel modular and scalable approach to road sign detection based on Particle Swarm Optimization, which takes into account both shape and color to detect signs. In our approach, in particular, the optimization of a single fitness function allows both to detect a sign belonging to a certain category and, at the same time, to estimate its position with respect to the camera reference frame. To speed up processing, the algorithm implementation exploits the parallel computing capabilities offered by modern graphics cards and, in particular, by the Compute Unified Device Architecture by nVIDIA. The effectiveness of the approach has been assessed on both synthetic and real video sequences, which have been successfully processed at, or close to, full frame rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

GPU-Supported Object Tracking Using Adaptive Appearance Models and Particle Swarm Optimization

This paper demonstrates how CUDA-capable Graphics Processor Unit can be effectively used to accelerate a tracking algorithm based on adaptive appearance models. The object tracking is achieved by particle swarm optimization algorithm. Experimental results show that the GPU implementation of the algorithm exhibits a more than 40-fold speed-up over the CPU implementation.

متن کامل

Massively parallel inverse rendering using Multi-objective Particle Swarm Optimization

We present a novel GPU-accelerated per-pixel inverse rendering optimization algorithm based on Particle Swarm Optimization (PSO). Our algorithm estimates the per-pixel scene attributes—including reflectance properties—of a 3D model, and is fast enough to do in situ visualization of the optimization in real-time. The algorithm’s high parallel efficiency is demonstrated through our GPU/GLSL shade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary Intelligence

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010